当前位置 >>成果展示 >>论文

A Load-Balancing Divide-and-Conquer SVM Solver.(ACM T EMBED COMPUT S 2017)时间: 2017-05-01 点击: 124 次

Authors:Xiaogang  Chen ; Z.Jane Wang  ; Xiangyang  Ji

Published inACM Transactions on Embedded Computing Systems 

Abstract:

Scaling up kernel support vector machine (SVM) training has been an important topic in recent years. Despite its theoretical elegance, training kernel SVM is impractical when facing millions of data. The divideand- conquer (DC) strategy is a natural framework of handling gigantic problems, and the divide-and-conquer solver for kernel SVM (DC-SVM) is able to train kernel SVM with millions of data with limited time cost. However, there are some drawbacks of the DC-SVM approach. First, it used an unsupervised clustering method to partition the whole problem, which is prone to construct singular subsets, and, second, it is hard to balance the computation load between sub-problems. To address these issues, this article proposed a load-balancing partition method for kernel SVM. First, it clusters sample from one class and then assigns data samples to the cluster centers by a distance measure and construct sub-problems; in this way, it is able to control the computation load and avoid singular problems. Experimental results show that the proposed method has better load-balancing performance than DC-SVM, which implies that it is suitable for distributed and embedding systems.


上一篇:Feedback-Free Binning Design for Mobile Wyner-Ziv Video Coding: An Operational Duality between Source Distortion and Channel Capacity.( IEEE T MOBILE COMPUT 2017) 下一篇:Underdetermined Joint Blind Source Separation of Multiple Datasets.(IEEE Access 2017) 返回列表

用户登录

用户注册